Derivation of mean dose tolerances for new fractionation schemes and treatment modalities.
نویسندگان
چکیده
Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation-neglecting the spatial dose distribution-can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.
منابع مشابه
New modalities for treatment of diabetic nephropathy: a mini review
Background and aims: Diabetic nephropathy (DN) is the most common cause of end-stage renal failure which could increase the risk of cardiovascular disease and morbidity and mortality in patients. The aim of this study was to investigate new modalities for treatment of diabetic nephropathy. Methods:This study was a mini-review research to investigate drugs that are used for DN treatment. Resul...
متن کاملEffectiveness of High Dose Pralidoxime for Treatment of Organophosphate Poisoning
Background: For effective treatment of organophosphate (OP) poisoning, development of a standardized protocol with flexible dose regimen for atropine and pralidoxime is an essential step. In this study, we aimed to assess the protocol devised in our setting; Bach Mai Hospital Poison Treatment Center, for treatment of OP poisoning that included a higher dose regimen of pralidoxime (2PAM). Method...
متن کاملEnhancing and verification of dose in external radiation therapy using Gd nanoparticles as a theranostic agent: A Monte Carlo simulation study
Introduction: Theranostics, in particular, the use of radionuclides with the capability of simultaneous imaging and treatment has opened new horizons in personalized treatment planning of targeted radiation therapy. In this approach, positive beta or gamma emitters are required for imaging and alpha, beta and Auger electrons for treatment purpose. On the other hand, studies hav...
متن کاملTumour radiobiology beyond fractionation
Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...
متن کاملEvaluation of Accuracy and Quality assurance of external beam therapy with photons
Introduction: Receiving exact dose by the patients is vital in radiotherapy. In radiation therapy, the dosimetry of radiations is too important because of successful radiation inquires for delivering the exact dose to the target volume. This study is to evaluate the tolerances and the accuracy of calculated dose of photon beams in the treatment software system. The TECDOC1583 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2018